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Exact solutions for vertical drainage and redistribution in soils
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Abstract. We solve a versatile nonlinear convection-diffusion model for nonhysteretic redistribution of liquid in a
finite vertical unsaturated porous column. With zero-flux boundary conditions, the nonlinear boundary-value
problem may be transformed to a linear problem which is exactly solvable by the method of Laplace transforms. In
principle, this technique applies to arbitrary initial conditions.

The analytic solution for drainage in an initially saturated semi-finite column is compared to previously available
approximate analytic solutions, obtained by assuming constant diffusivity, as in the Burgers equation, or by
neglecting diffusivity, as in the hyperbolic model. Contrary to popular opinion, the hyperbolic model has more than
one shock-free solution in a semi-infinite medium z = 0, as opposed to an infinite medium z € R. However, both the
Burgers equation and an improved hyperbolic model underestimate diffusivity at high liquid contents and
consequently overestimate the curvature of the soil liquid content profile.

1. Introduction

The redistribution of soil water is an important natural process in ecology, agriculture and
water-resources management. In addition, controlled redistribution has been used by Nielsen
et al. [1], Mahmoodian-Shooshtari et al. [2] and Jones and Wagenet [3] to measure soil
hydraulic properties. Such measurements rely upon the assumed dynamical theory of
unsaturated flow during drainage.

One-dimensional vertical flows must obey the equation of continuity

a0  dv
—+==9 1

ot 9z 1)
where 0(z, t) is the volumetric moisture fraction, v is the associated flux, z is depth and ¢ is
time. During redistribution, the upper boundary condition is

v=0, z=0. 2)

From the form of Darcy’s law given by Childs [4] to account for unsaturated flow with
hysteresis, the flux is given by

_ IW(6,0+) 96  IV(6,0.) do. ]
v= K(G)[ a0 az+ 00 4 dz HE

where K is the hydraulic conductivity, ¥ is the (negative) capillary potential, or nongravita-
tional potential energy per unit weight, and 6, is the moisture content at which drying takes
over from wetting.

A particular example of the redistribution problem is the deep-drainage problem, in which
an initially saturated (8, = 6,), notionally semi-infinite (! = «) column is allowed to drain. In
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this circumstance, moisture decreases monotonically everywhere and hysteresis effects are
ignorable. Equations (1) and (3) then imply the nonhysteretic unsaturated-flow equation

% _ 7 () 90) 4K 20
1= 9z \PO 52" 4 5z )
where D is the soil water diffusivity,
av(e6, 6,)
D(6) = K(6) —5— - %)

When more general initial conditions are imposed, one expects distinct wetting and drying
zones and the effect of hysteresis may be considerable, as shown, for example, by Youngs
and Poulovassilis [S] and by Watson and Sardana [6]. However, due to the difficulty of the
problem, hysteresis has not been accounted for in exact analytic models. It has been
incorporated in approximate analytic or numerical models by Whisler and Klute {7], Rubin
[8], Staple [9], Peck [10] and Perrens and Watson [11].

Even when hysteresis has been neglected, analytic models have continued to suffer from
the deficiencies summarized by Gardner et al. [12]. The relative magnitudes of so-called
gravitational and diffusive components of the soil water flux were investigated by Talsma
{13]. In some, but not all, zones of the soil, one may neglect either the diffusive contribution
or the gravitational contribution to the flux gradient (i.e. respectively the first and second
terms in the right-hand side of (4)) and thereby obtain previously used approximate analytic
models. For particular soil hydraulic functions D(#) and K(6), separation of time and space
variables in equation (4) is possible but Raats [14] pointed out that a solution of the form
0(z, 1) = f(2)g(¢) is feasible only for a limited class of initial conditions.

As discussed by Philip [15], if the functions D(6) and K(6) represent measured properties
of real soils, then both the quasilinear flow equation (4) and the boundary condition (2) are,
in fact, highly nonlinear. However, for various choices of D(8) and K(#) appropriate to
other applications, Fokas and Yortsos [16], Rosen [17] and Rogers et al. [18] have been able
to transform the nonlinear equation (4), subject to constant-flux boundary conditions, to an
exactly solvable linear problem. A similar model solvable equation of the form (4) has been
shown by Broadbridge and White [19] and White and Broadbridge [20] to be well-suited to
unsaturated flow in soils. Here we use this model to solve the nonhysteretic redistribution
problem exactly. This enables us to better assess the effect of various additional popular
assumptions, such as the neglect of the diffusive contribution to the soil water flux. In
principle, our technique applies to general initial conditions.

2. Analytic solution (semi-infinite column)

Recently Broadbridge and White [19] and White and Broadbridge [20] made use of the
unsaturated-flow equation (4) with

K=K®(C-1)/(C-0) (6a)
and

D =h(C)S*(,— 6,)3(C—-0)%. (6b)
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Here © is the normalized water content, ® = (0 —6,)/(6, — 0,), where 6, is the initial
uniform low volumetric moisture content, 6, is the moisture content at saturation, § is the
sorptivity defined by Philip [21] and K| is the value of conductivity at saturation 6 = 6,. For a
wide variety of real soils, the representation (6a-b) is reasonable and the parameter C
between 1.02 and 1.5 (White and Broadbridge [20]).

The function A(C) is the inverse of

C(h) = (4h/m)"'* exp(— 1/4h) lerfc(1h™ %) . @)

In terms of dimensionless variables, our version of the nonlinear convection-diffusion
equation (4) is

00 4 [ i@_]_dl(,k 90

Aty dze L7F 4z, d® dz,’ (8)
where

ze=2z/A,, ti=tlt,, D.=C(C-1)/(C-08) (9)
and

K.=(C-1)0*(C-0). (10)

The length and time scales are

A, = h(C)SYC(C —1)(6, - 6,)K, (11
and
t,=h(C)SYC(C—-1)K?. (12)

The factor h(C)/C(C—1) is of the order of unity, since A(C)/C(C—1)— 1%, mw/4 as
C—> 17,0, ), is a natural unit for capillary rise, an intrinsic property of the medium. The
dimensionless water-flux density is

U*=K*—D* (9@/(92*. (13)

When D,.(0©) and K,(®) take the form of (9-10), equation (8) is exactly solvable when
subjected to constant-flux boundary conditions. The redistribution problem, involving a
zero-flux boundary condition,

v*=0, Z*=0, (14)

is a particular case of the solvable system.

However, the mathematical problem now being addressed is that the initial conditions
® = 0,(z,) may be more complicated than those assumed by Broadbridge and White [19].
For example, in some experiments (e.g. Talsma {13] and Mahmoodian-Shooshtari et al. {2]),
a prescribed volume V, of water is rapidly injected into a soil column of cross-sectional area
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A, after which redistribution is monitored. In such cases, the ideal initial conditions would be

0=0,z.)=1, z<l,=V,/[A(6, - 6,)A,],
(15)
=0, z> 1.

We shall derive an exact solution for these initial conditions but the same technique applies

to general initial conditions.
The Kirchhoff [22] transformation

n= fi D.(w)de (16)
=C(C-DHN(C-0), (17)
modifies (8) to

io"p,_o"zp,_dK*o"_u

D, 9t  9z2 dp dz.’ (18)
The boundary and initial conditions are
ve=Ke= =0, 2,20 (K.=CuT[u—-(C-DP), (192)
u—>C—1 as z,—> o, (19b)
and
[c, 2.<ly, t.:=0,
= (20)
C—-1, z.>1l,, t.:=0.
The Storm [23] transformation
z=J:' D3V (w(zs, 1)) dza = [C(C — )] L pldz, (21a)
and
T=t, (21b)
then changes (18) to
WD ZZZ“Z +m - pi(C-1)] 2 22)
where
m=4C(C—1). (23)

The boundary and initial conditions (19) and (20) are equivalent to
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_ _ - C—l]”zﬁ_y,_ _
[n—(C-1)] [———C -7 =0, Z=0, (24a)
u—>C—-1 as Zow, (24b)
and
C, Z<L=[(C-1)/C]",, T=0,
B= (25)
c-1, Z>L, T=0.

Equation (22) is essentially Burgers’ equation. Following Forsyth [24], Hopf [25] and Cole
[26], after an application of the transformation

u

1/2 2 4
— —-N==2 == 26
m - pl(C-1)]==—, (26)
(22) can be replaced by the linear diffusion equation
du ’u
oT “az2 7

subject to upper boundary condition ¢°u/9 Z> = 0, which is equivalent to du/d T =0, by (27).
From (26), u is defined up to a free gauge transformation u(Z, ) — au(Z, t) (« constant)
and we can satisfy the boundary and initial conditions (24)-(25) by imposing

u=1, Z=0, (28a)

u—exp(—1I,) as Z—ow, (28b)
exp(-[C/(C-D)"*Z], Z<L, T=0,

u= (29)
exp(—1I)(constant) , Z=L, T=0.

The linear problem (27)-(29) may be solved by the method of Laplace transforms (see
Appendix), resulting in
Z<L: u=exp(—MZ+ M’T)+erfc(1ZT"?)
+ 3 exp(MZ + M°T) erfc(3[L + Z]T " + MT"?)
- Lexp(-MZ + M’T)erfc([L — Z]T "V* + MT"?)
— Yexp(—ML)erfc([L + Z]T™"?)
+ S exp(—ML) erfc(3[L — Z]T™"'?)
— Lexp(—MZ + M*T) erfc(3ZTV'* — MT"?)
~ Lexp(MZ + M*T)erfc(3ZTV* + MT"?), (30a)
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Z=L: u=exp(—ML)+erfc(1ZT"?)
~ L exp(MZ + M*T) erfc(3ZT "> + MT''?)
— Lexp(—~MZ + M*T) erfc(3ZT "% — MT''?)
+ L exp(MZ + M*T) erfc(3[Z + L]T™"* + MT'?)
+ L exp(-MZ + M*T)erfe(A[Z - L]T™"* - MT'?)
— L exp(—ML)erfe(3[Z + L]T™'?)
— L exp(—ML)erfc(3[Z - LT,

where

1/2

=[5

To obtain the matrix flux potential u via (26), we use

Z<L: j—; = — M exp(—-MZ + M°T)
+ 1M exp(MZ + M*T) erfc(3[L + ZIT™"* + MT"'?)
+ IMexp(—MZ + M*T) erfc(3[L — Z]T7'* + MT"'?)
+ IMexp(—MZ + M*T) erfc( ZT~'* — MT"'?)
— 1M exp(MZ + M*T) erfc(ZT7'* + MT"?),
Z=1L: j—; = IMexp(MZ + M*T)erfc(3[Z + L1T™"* + MT"'?)

—~ M exp(—MZ + M*T) erfc(4[Z — L]T "> - MT"'?)
+ iMexp(—MZ + M*T) erfc( ZT 72 = MT''?)
— IMexp(MZ + M*T) erfc(LZT "% + MT"?).

p

For a fixed non-negative value of Z, @ is given by

N D _lﬂ)‘l]
e C|:1 (1 2m u 57 .

The depth z, is obtained by inverting (21a),

VA
z*=J; Dl*dz

=C'[im'*Z-1nu], using (28a).

(30b)

(1)

(32a)

(32b)

(33)

(34)

The expressions (30)-(34) provide an exact parametric solution, requiring no numerical

integration.

In the deep-drainage problem, the whole column is initially saturated (L = <), all terms in
(30) involving L become negligible and the solution agrees with that of Broadbridge and
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Fig. 1. Hysteresis curves in the moisture characteristic of a typical soil, including boundary-drying curve,
primary-drying curve originating at 6, and boundary-wetting curve.
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White [19] for the special case of zero flux R =0 at z =0, except that the initial moisture
content is now 6, rather than 6,. From (33), we obtain an explicit expression for the surface
moisture content during deep drainage,

®=C—[1+1/[C—1]-1)e™"" erfc(M[t/t]"*)]™} at z=0. (35)
6 T T T T
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Fig. 2. Soil water diffusivity, D, in drying Yolo light clay. @ estimated from measurements of K(6) and ¥(0)
(Moore [27}). —— current analytic model.
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An appropriate time scale for surface drainage is
M™%t = C*h(C)S’K?. (36)

For Yolo light clay with 6, =0.2376 and 6, = 0.4950, we take C=1.17 and K, =1.23 X
1077 ms~". The raw conductivity data and fitted expression (6a) are given in Fig. 3a of White
and Broadbridge [20]. In a theory of deep drainage, the appropriate diffusivity (5) is related
to the derivative d¥/d@ taken along the boundary drying moisture characteristic whereas in a
theory of infiltration, the derivative is taken along the boundary wetting characteristic (Fig.
1). Using the drying-moisture characteristic data measured by Moore [27], we calculated the
sorptivity S by the method of Philip and Knight [28] to be 0.987 x 10™* ms™'">, compared to
1.254 x 10" *m s~ "'? for wetting soil.

©

04 0.6 08
o T I T |
0.2 M t/ts = 0 3 )
_ 1 — .
0.4 4 .

06 - —

| ] ] ]

Fig. 3. Analytic solution for redistribution in Yolo light clay initially saturated to depth 0.2 m. Here, M ", = 14.4h.
The moisture characteristic ¥(8) is taken to be the boundary-drying curve.
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z 1=
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Fig. 4. Analytic solution for drainage of an initially saturated semi-infinite column of Yolo light clay at
dimensionless time M*T =1.0. — — — current analytic model. - - - - Burgers model. hyperbolic model (Sisson et
al. [31]). —--—--— improved hyperbolic model.
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2 ] | | | |

Fig. 5. Analytic solutions of Fig. 4 at dimensionless time M’T = 4.0.

Values of the diffusivity (5) have been estimated by differentiating raw ¥(6) data and the
irregularities in measured D(6) may be a consequence of the noise in the input. The fitted
diffusivity model (6b) seems to be a reasonably smooth representation of the raw data (Fig.
2). In Fig. 3 we plot the analytic solution for nonhysteretic redistribution of water in Yolo
light clay initially saturated to depth 20 cm, displayed at dimensionless times M°T = 1.0 and
4.0, Figures 4 and 5 include the solution for deep drainage of an initially saturated
semi-infinite column.

3. Analytic solution (finite column)

Consider the nonhysteretic redistribution of moisture in a finite-length column with im-
permeable boundaries. The case of nonlinear diffusion with diffusivity of the form (6b) was
solved by Knight and Philip [29]. Here we incorporate gravity by assuming a conductivity
function of the form (6a), thereby correcting the deficiency recognised by Mahmoodian-
Shoostari et al. [2].

Let us assume that the column has dimensionless depth z,. From (21a), for any
Zy% € [07 ZO*]’

Z1»
L Odz, = Cz;e— 3m'?Z(z,4, t4) . 37
Since the total volume V, of water in the column is constant, the lower boundary must

correspond to a constant value Z = Z;,. From (37),

V,-V, ]

ey, 172 _
Zy=2m [Czo* A —6)A

(38)

where A is the cross-sectional area and V, = A,0,z,+A.
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The unsaturated-flow equation (8) is to be solved, subject to zero-flux boundary conditions
vx=0 at z,=0,zy« (39)
and general initial conditions
®=0,(z,) at t,=0, (40)

As in the semi-infinite column, after applying the Kirchhoff, Storm and Cole-Hopf
transformations consecutively, the flow equation transforms to the linear diffusion equation
(27) while the boundary condition at Z = Z, must now be the same as that at Z = 0, namely

o7u (-2
8z*\ oT

and the initial conditions are general,

)=0 at Z=0,Z, (41)

w(Z)y=uy(Z) at T=0, with u, continuous.
We define f,(Z) by:
Jo(Z) = uy(0) +(Z/Zo)[ug(Z,) — us(0)] (Fig. 6) .

The function g(Z, T) = uw(Z, T) — f,(Z) vanishes at Z =0, Z, when T =0 and by (41), this
must be true at all times. We may extend g(Z, T') skew-symmetrically at Z =0, Z, and since
g(Z, T) vanishes at the boundaries, this skew-symmetric extension is continuous (Fig. 6).
Therefore, we may expand g(Z, T') as a Fourier sine series without any risk of incurring the
Gibbs effect (e.g. Hamming [30]) when in practice the series is truncated.

o

. mZ
u(Z, T) = f(Z) = g(Z, T) = 2 a(T)sin =2 (42a)
j=1 0
where
2 (% . mjZ
a(T)= 70 . g(z, T)sin 2 dz. (42b)
g
f,(Z)
u(Z)
z z
0 a(2) °

Fig. 6. Definition of g(Z).
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Fig. 7. Analytic solution for nonhysteretic redistribution in a 0.7 m vertical column of Yolo light clay initially at
uniform volumetric moisture content 6 =0.388. Here, M %, =21 days.

Now u(Z, T) given in (42a) satisfies the linear diffusion equation (27), provided

a(T)=— (%ﬁ)z a,

which implies
a,(T) = a,0) exp[—{%f}z T] . (43)

Given the initial conditions, a,(0) may be calculated and hence (43) provides a solution in
the form of a Fourier series (42a) which is valid at all times.

To demonstrate the effect of gravity, we consider a finite column which initially has a
uniform intermediate moisture content ® = @®, (constant). In the absence of gravity, the
infiltration equation reduces to a nonlinear diffusion equation which would have the trivial
solution O(z, t.) = ©,, predicting no redistribution. The initial conditions here are the same
as those considered for deep drainage except that ©®, is now less than 1. By analogy with
(29), the initial conditions must be

MZ

u=u,=e at T=0. (44)
Here,
M=[C/(C-D]"(w,— C+1), with u=C(C-1)/(C-0,). (45)

The boundary condition (41) simplifies to

MZ,

u=1 at Z=0, u=e at Z=12,.

From (42b),
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4/0)= o (1= e 4201 = (=1)) + = [(~1) ~ 1]

0%

0

Then, from (42a) and (43),

1o Saen(Z 1)
wZ, T)=1+ Zo( °—1)+ 2 a,(0) exp Z, T | sin zZ, 47)
We may calculate ® from (33), using
=zt @+ 2 a0 e - {Ff rheos 22
37 =Z; ' e Mo-1)+ g Z, a;(0) exp Z, T cos Z, (48)

Equations (33)-(34) and (47)—(48) then provide an exact parametric solution. At large
times the moisture profile approaches an equilibrium profile in which capillary forces balance
gravitational forces, the gradient of total potential being zero. By Darcy’s law, this means
that the flux is zero everywhere,

v a\P)
0= _<1 dz

implying ¥ = z + ¥,,, ¥, being the asymptotic capillary potential at z = 0. It is well-known
that in the absence of hysteresis, the profile z(#) would resemble a portion of the moisture
characteristic ¥(0) (e.g. Watson [6]).

From (26) and (47), the asymptotic moisture profile is given by

u=(C- 1){1 +2m™V?Z;'(1 - e“”ZO)[l - ZEO 1- e‘MZo)]_l} , (49)

so that, at the surface Z =0,

po g, =(C-1{1+2m °Z (1 - e M2}, (50)

0—-0,_.=C[1-{1+2m™'?Z;' (1 —e M%)} 1], (51)
and

6—(0,—6,)0,+86,. (52)

The asymptotic moisture profile will then be given by a portion of the moisture characteristic
beginning at this value of moisture.

In practice, the Fourier series (47)—(48) do not converge rapidly at early times. At
dimensionless times M’T less than one, it is more efficient to replace (47)-(48) by
alternative series of complementary error functions, obtained by the method of Laplace
transforms (Appendix).

Figure 7 shows the analytic solution for the redistribution of water in the same model soil
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depicted in Fig. 3a of White and Broadbridge [20] and Fig. 2 here, but this time in a vertical
column of dimensionless length z,, =4.775C ~! and with initial uniform moisture content
®,=iC.

4. Comparison with simplified models
(i) The hyperbolic model

The replacement of equation (4) by the hyperbolic equation

3 _ IK

= oz (53)

has been of some use in estimating the total amount of moisture

W(z,, )= f:l 0(z,t)dz

down to moderate depths z, in a draining soil (e.g. Gardner et al. [12] and Nielsen et al. [1]).
Equation (53) is associated with the so-called unit-gradient approximation, the capillary
potential gradient g¥/dz being assumed negligible compared to —1, the gravitational
potential gradient. However, equation (53) also follows from (4) when one makes the
weaker assumption that the gradient of the capillary component of moisture flux is small
compared to the gradient of K(#), the flux components themselves possibly being of the
same order of magnitude. In fact, at z=0, the zero-flux boundary condition of the
redistribution problem requires that the downward gravitational component of flux should be
balanced by upward (including diffusive) components so that the unit-gradient approxima-
tion cannot be valid near the surface. In this circumstance, it would seem unlikely for the
weaker condition of negligible capillary-flux gradient to hold and we share, along with
previous users of equation (53), a distrust of its predictions near z = 0.

Equation (53) can, in principle, always be solved by the method of characteristics (Sisson
et al. [31]), since it follows that

dz(6,t) dK

gt de’ (54)
implying that moisture contours 6 = 6, propagate with speed K'(6,) = [dK/ d6],_,, . Consider-
ing that @ is defined only on the ray z =0, the most general solution which does not exhibit
shock fronts is

ﬁ =K'(8) for t=1,6), (55)
with £,(8) an arbitrary monotonic decreasing function showing the time #,(6) at which the
surface has moisture content 6. Figure 8 shows a typical set of characteristic curves z(6, ¢) (8
fixed) corresponding to initial conditions 6 = 6,. It is clear that characteristics do not intersect
and that shock fronts do not develop. If 8 were defined on the whole of the real line
—o < z <, then the solution given by Lax [32] would be the only shock-free solution and it
satisfies initial conditions
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t (91) to(ez) t

| K

Fig. 8. Typical characteristic curves depicting propagation of moisture contours 6 = §,, given initial saturation of
semi-infinite region z > 0.

0

s

(z>0)

0, (z<0).

n

This was the only solution considered by Sisson et al. [31] and its restriction to z >0 would
correspond to (55) with £,(9) = 0. In this solution, surface moisture drops immediately to the
background level 6,, as shown in Fig. 2 of Sisson et al. [31]. However, in our analytic
solution, the appropriate time scale for surface drainage is M %, which depends on the
initial moisture content. In our example of initially saturated Yolo light clay, this time is
approximately 14.4 h. The hyperbolic model may yet be improved by retaining the full
boundary condition

0=v=D(0)%—-K(0) at z=0 (56)

when solving the approximate equation (54) exactly.
From equation (55),

%‘;”) = —1,(0)K'(6) + [t — 1,(6)1K"(6) .

However, at z =0, t=t,(8) and by (56),
dz _ D(0)

30~ K(8)
Therefore, the boundary condition (56) is satisfied when

D(6)

t(0)=— W . (57)
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For commonly assumed diffusivity and conductivity functions, (57) may be integrated
exactly, leading to an analytic solution (55). Assuming that D(8) and K(6) have the form (6)
of our current analytic model, we obtain

o(0) = ’"_1’:[1“([(2_%9—)%1]“2] * C(zcl— 1~ 2c1—— @)

" Cz((zcl—e)z B (261— 1)2>] ' oY

At times large compared to m™'t,, the improved hyperbolic model agrees closely with the
solution of Sisson et al. [31], as shown in Fig. 5. At early times, the improved hyperbolic
model still underestimates the surface water content but it predicts a value significantly
higher than 6, (Fig. 4).

(ii) The Burgers equation

Analytic solutions to constant-flux infiltration have previously been obtained by assuming
that K(0) is quadratic and that D is constant (Clothier et al. [33]). The unsaturated flow
equation (4) then reduces to Burgers’ equation -

90 PAC) e

d . _ _
e =D 57208, with U=K,/(6,-6,). (59)

Although this model has not previously been used in redistribution studies, it may be
considered to be a more accurate representation than the hyperbolic equation (54), which
completely neglects diffusion. For deep drainage, the initial condition is ® =1 and the
boundary condition is

0=U®2—DZ—®

at z=0. (60)
This problem is virtually identical to that of equations (22)—(24), except that now z is
ordinary depth rather than material coordinates Z and ® is normalized volumetric water
content rather than Kirchhoff variable u. By the procedure which we have already used to
solve equation (22), we obtain

0="Fut 2L, (61)
where
u=exp(M’ — Mz) +erfc(1zt™''?)
— 1 eM"{e ™ erfc[izt™? — M"Y
+eM erfc[ize™V? + Mt %]} (62)

and
duldz=—M exp(M’t — Mz)
— 1M exp(M’t + Mz) erfc[$zt 7V + Mt'?]
+ 1M exp(M’t — M2) erfc[3z¢7'"* — Mt'?]. (63)
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In this case, M = U/D. We choose the standard representative diffusivity of Philip [15],
D=1xn8%@,-96,),

with S representative of drying soil. The solution of the Burgers model is plotted in Figs. 4
and 5, along with solutions of the hyperbolic and full analytic models for Yolo light clay. The
hyperbolic model, implying maximum propagation speed of K'(6,), leads to a discontinuity
in 90/dz at depth ¢tK'(6,). This discontinuity may be viewed as a singularity in the second
derivative 9°0/9z>. Regions of high curvature in the moisture profile will be smoothed when
diffusion is incorporated. However, the representative diffusivity used in the Burgers model
is low compared to D(6,) and hence regions of high curvature in 6(z) are more noticeable in
the Burgers model than in the more realistic current analytic model. It is fair to say that in
the example of Figs. 4 and 5, moisture profiles predicted by the Burgers model are more
accurate than those predicted by the hyperbolic model.
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Appendix

We apply the Laplace transformation to solve the linear diffusion equation (27) subject to
boundary conditions (28) and initial conditions (29), which arise in the theory of redistribu-
tion in a semi-infinite column. Secondly, by similar techniques, we solve the diffusion
equation subject to boundary conditions (41) and initial conditions (44), which arise in the
theory of redistribution in a finite column.

Let v = u — exp(—ML) and 0(Z, p) be the Laplace transform of v(Z, T). Since v satisfies
the diffusion equation (27), v satisfies

d’v
dz?

~-pv=—v,(2), (A1)
where v,(Z) is the initial condition (e.g. Ch. 12 of Carslaw and Jaeger [34]). From the initial
conditions (29),

-MZ -ML
e —e , Z=<L,
vO(Z)z{O’ ZBL (A2)

Let 7 = A(Z, p) exp(—p''’Z), and B(Z, p) =d/dZ A(Z, p). Then (A1) implies
e ?""2dB/dZ —2p'*Be "% = — v (Z) . (A3)

Let B= C(Z, p)e® Z Then (A3) implies

dc _

Z="" @) (Ad)
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Using (A2), (A4) has the solution

1 —(pl/? C_ML —pli2 .
2 p= g " G e, i 2L
1 - P2+ M)Z C_ML —pli2p .
=p1/2+Me - o7 € +r(p), if Z=L, (AS)

with r( p) some function of p alone. From C, we deduce B and A and it follows that

~MZ —-ML

— € —plizg r(p) 1/27 .
v= - + e’ “+—=5e? “, if Z<L,
- M p q(p) 2
_ 1 { 1 —(pV2+ML _ e M- _pIIZL} pli2z —pli2z
=3 p1/2(p1/2 + M) € » € e +m(p)e
+ z’;f,)z e?'? it Z=1L. (A6)

where g( p) and m( p) are functions of p alone. The functions m( p), q( p) and r( p) may be
determined by the boundary conditions d’5/dZ* =0 at Z =0, « and by the condition that &
is continuous at Z = L. The final expression for v is

e M e ™ o e_pm(L'*' Z)

- _ 41 e’ (L+Z)
v P M P 2 € p1/2(p1/2 + M)
o e_ML e_p1/2(L+Z) B Mz e_,pl/zz
2
p p(p—M?)
1/2, 1/2
_ eP (Z-1) e P )
-1 ML{pllz(pllz-f-M) — 7 }, if Z<L,
L e_puzz i e_ML{ e_p1/2(2+L) B e_p1/2(Z_L)
p(p _ MZ) 2 pl/Z(pl/Z + M) pl/Z(pl/Z + M)
e PLr2) P2 -D) e PHZ-1) _
- 7 - 7 +2 p—M2 , if Z=L. (A7)

We may expand rational functions of p as partial fractions. For example, we simplify (A7) by
using

-M? 1 1
oM 11 A8
p(p-M>) p p-M’ (A8)

Then v may be obtained from v using tables of standard inverse Laplace transforms (e.g.
Appendix V of Carslaw and Jaeger [34]) and the expressions (30a, b) follow.
For the case of redistribution in a finite column, the Laplace transform « of u must satisfy

d2
dz*

&

~pia=—uy(Z)=—-e M. (A9)
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By the methods used for the infinite column, the solution is

—-MZ pIIZZ

c -
Py 1E(p) i +F(p)e™®

1/27

(A10)

&
Il

The functions E( p) and F( p) may be determined by the boundary conditions d*z/dZ* =0 at
Z=0, Z,, with the result

C_MZ M2 —pli2z
a2 g2y ©
p—M p(p—M)
+ M2 e_pllzzo sinh(me)
p(p—M?) sinh( p'"*Z,)
_ M? M7, sinh(p''%Z)
2 . .
p(p—M?) sinh(p'’Z,)

ﬁ:

(Al1)

Once again, we use (A8) and following the treatment of a similar problem (Sec. 12.5 of
Carslaw and Jaeger [34]), we expand [sinh(p''?Z,)] " as

2 =2, e @n+PZ0 (A12)
n=0

epl/zzo(l _ e_2p1/220) -
Application of the inverse Laplace transform to (All) then yields

- 2 -
u=e MEMT 4 orfe(1ZT 1/2)

~ L eMT (e ™MZ orfe(LZT V2 — MTY?) + eMZ erfe(LZT V2 + MTV?)}
+ > LM T e MOZZ220) orp(L[2Z, — Z +2Zyn] T~ V> — MTV?)
n=0

+ eMPZmZY2E orfo(L[2Z, — Z +2Zyn) T~ + MT"?)}
— 1 eMT (™ M2+ 2220 orf(L(2Z, + Z +2Zyn] T V% — MT"'?)

+ eMCLTET2E) orfo(L[2Z, + Z +2Zon) T2 + MT''?)}

+ % e—MZO+M2T{e—M(ZO+Z+ZZOn) erfc(%[ZO +7Z +2Z0n]T_1/2 _ MTI/Z)

+ eMPt 21220 orfo(L[Zy+ Z + 2Zyn) T~V + MT'?))

_ % e—MZO+M2T{e—M(ZO—Z+2ZOn) erfc(%[ZO _ Z+2Z0n]T_1/2 _ MTI/Z)

+ eMPm 21220 erf(1[Z, — Z +2Zgn] T~ + MT''?))

—erfc(L[2Z,— Z+2Zyn]T™ V%) + e M%erfe(3[Z,— Z +22Z,n] T "'?)
+erfc(3[2Z,+ Z +2ZnT™ V) —e MPoerfe(i[Z, + Z +2Z,n]T V). (A13)

The above series converges rapidly for small ¢ and therefore it is convenient to use it at
dimensionless times M°T <1.
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